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SUMMARY
Bacterial defense against phage predation involves diverse defense systems acting individually and concur-
rently, yet their interactions remain poorly understood.We investigated >100 defense systems in 42,925 bac-
terial genomes and identified numerous instances of their non-random co-occurrence and negative associ-
ation. For several pairs of defense systems significantly co-occurring in Escherichia coli strains, we
demonstrate synergistic anti-phage activity. Notably, Zorya II synergizes with Druantia III and ietAS defense
systems, while tmn exhibits synergy with co-occurring systemsGabija, Septu I, and PrrC. For Gabija, tmn co-
opts the sensory switch ATPase domain, enhancing anti-phage activity. Some defense system pairs that are
negatively associated in E. coli show synergy and significantly co-occur in other taxa, demonstrating that
bacterial immune repertoires are largely shaped by selection for resistance against host-specific phages
rather than negative epistasis. Collectively, these findings demonstrate compatibility and synergy between
defense systems, allowing bacteria to adopt flexible strategies for phage defense.
INTRODUCTION

Bacteria evolved numerous, diverse lines of active immunity as

well as abortive infection mechanisms to withstand phage pre-

dation.1 Recent systematic screening uncovered numerous

anti-phage defense systems that widely differ in protein compo-

sition and modes of action.2–7 The mechanisms employed by

bacterial defense systems include phage genome or protein

sensing followed by degradation,8–10 introduction of modified

nucleotides that abrogate phage replication,11,12 as well as mul-

tiple sensing mechanisms leading to abortive infection that re-

sults in the host cell dormancy or death.4,13–21 However, for

many, perhaps, the majority of the bacterial defense systems,

the mechanism of action remains unknown.

A bacterial genome carries, on average, about five distinct

(currently identifiable) defense systems.22 The remarkable vari-

ability of immune repertoires was observed even within the

same species.22–24 Genes encoding components of these sys-

tems tend to cluster together in specific genomic regions known

as defense islands, sometimes associated with mobile genetic

elements (MGEs) integrated into distinct hotspots in the bacterial
Cell Host & Microbe 32, 1–1
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genome.24–26 Defense systems are believed to undergo frequent

horizontal transfer between bacteria, and close proximity of the

respective genes could facilitate simultaneous transfer of multi-

ple systems.27

Despite the recent burst of bacterial defense system discovery,

the causes of their clustering in defense islands remain poorly un-

derstood. It has been argued that co-localization of defense sys-

tems in MGEs and the resulting joint horizontal gene transfer

(HGT) could provide fitness advantages to recipient bacteria,

especially in phage-rich environments.28 Additionally, it has

been suggested that synergistic interactions between defense

systems could drive their co-localization and favor their joint trans-

fer,29,30 as supported by the conservation of certain sets of de-

fense systems.31 For example, CRISPR-Cas systems of different

subtypes often co-occur and the CRISPR arrays interact with Cas

proteins across different systems.32 Furthermore, toxin-antitoxin

(TA) RNA pairs33 and possibly other TA modules34 safeguard

CRISPR immunity by making cells dependent on CRISPR-Cas

for survival. CRISPR-Cas and restriction-modification (RM) sys-

tems,35 as well as BREX and the restriction enzyme BrxU,30 co-

occur resulting in expanded phage protection. However, these
6, April 10, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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examples of interaction between bacterial defense systems

notwithstanding, their co-occurrence in bacteria and the connec-

tions between co-occurrence and co-localization in bacterial ge-

nomes have not been analyzed on a large scale, and the underly-

ing factors contributing to this phenomenon, such as synergistic

interactions, remain largely unexplored. The possibility remains,

notwithstanding all the adaptive explanations, that defense

islands evolve neutrally through a preferential attachment process

whereby multiple defense systems are incorporated into genomic

regions devoid of essential genes where insertions are tolerated.

Here, we report a comprehensive analysis of the co-occur-

rence of defense systems in 26,362 Escherichia coli genomes,

as well as in complete genomes from four bacterial orders, En-

terobacterales, Bacillales, Burkholderiales, and Pseudomona-

dales, to investigate the role of interactions between different de-

fense systems in anti-phage immunity. Our findings show that

defense system co-occurrence varies substantially across

E. coli phylogroups and taxa and is not directly related to their

co-localization in the genome. For several pairs of non-randomly

co-occurring and negatively associated defense systems in

E. coli, we experimentally demonstrated synergistic interactions

that provided an evolutionary advantage to the bacterial popula-

tion. Moreover, some of the defense systems that are negatively

associated in E. coli were found to co-occur in other bacterial

taxa and can also protect synergistically against specific

phages. These findings imply that selection for robust immunity,

rather than mechanistic incompatibility, is the primary driving

force that shapes the defense system repertoire in bacteria.

RESULTS

Distinct defense system repertoires across E. coli

phylogroups
To explore the variation in the immune repertoires among closely

related bacteria, we analyzed the defense system content in a

comprehensive dataset of 26,362 E. coli genomes from the

NCBI Reference Sequence (RefSeq) database.36,37 E. coli is an

ideal model organism for this research due to its wide distribution

in diverse environments, high genetic diversity, the availability of

numerous, well-characterized, complete genomes as well as a

large panel of well-studied phages.38,39 We found that, in agree-

ment with previous observations, on average, E. coli genomes

carry 5–7 defense systems, but some clades, such as those in

phylogroup B2-1, harbor a greater diversity of such systems

(Figure S1A; Table S1). The majority of the defense systems

are encoded in the chromosomes, but there are some clades

where additional systems, especially Gabija, tmn, PifA, ppl,

and AbiQ are carried on plasmids (Figure S1B).

We sought to investigate in greater detail the clade-specific

patterns and the differences among the six major E. coli phy-

logroups that vary in their ecology. Our dataset prominently rep-

resented phylogroups A (25%), B1 (29%), and B2 (19%), which
Figure 1. Distribution of defense systems across E. coli phylogroups

(A) A phylogenetic tree displaying 26,362 E. coli genomes obtained from the Ref

(B) Number of defense systems found per E. coli strain in each phylogroup. The

(C) Prevalence of defense systems in the E. coli genomes. The defense systems a

total count is shown in the top bar graph. The bars are color-coded according t

prevalence of the defense systems per phylogroup in percentage.
are highly prevalent in the human (A and B2) or domestic/wild an-

imalmicrobiomes (B1)40 (Figure 1A). Our analysis revealed signif-

icant differences in the number (Figure 1B, Wilcoxon two-sided

test, p < 2e–16) and types (Figure 1C, chi-squared test for homo-

geneity, p < 0.001) of defense systems among the phylogroups.

Phylogroup B2-1, which includes extra-intestinal pathogenic

(ExPEC) strains,41 was particularly noteworthy, with the highest

average number of defense systems (8) among the examined

phylogroups (Figure 1B). The genomes in phylogroup B2 accu-

mulate virulence factors42,43 as well as antibiotic resistance

genes,44 suggesting that this phylogroup is specifically prone

to HGT mediated by MGEs such as pathogenicity islands and

plasmids. Of particular interest in phylogroup B2 is the already

reported absence of CRISPR-Cas type I-E that is common in

other E. coli phylogroups45 (Figure 1C). Conversely, significant

enrichment (chi-squared test for homogeneity, p < 0.001,

Table S2) of Retron I-C (odds ratio [OR] = 9.04) and AbiE (OR =

4.77) was detected in the B2-1 subgroup, and high prevalence

of CRISPR-Cas type I-F (OR = 5.11), Thoeris I (OR = 6.17), Septu

I (OR = 3.17), PsyrTA (OR=7.19), and qatABCD (OR = 4.63) was

observed in the B2-2 subgroup.

Phylogroup C showed enrichment of BREX I (OR = 3.54) and

phylogroups E1 and E2 exhibited a much higher prevalence of

Zorya II (OR = 4.62 and 10.25, respectively) and Druantia III

(OR = 4.87 and 6.92, respectively) compared with the other phy-

logroups. Phylogroup E2 additionally showed a reduced preva-

lence of RM IV (OR = 0.02) that seems to be compensated by

an increase in RM IIG (OR = 7.86).

For most phylogroups, we observed a relatively strong posi-

tive correlation (r = 0.33–0.65, p < 2.2 3 10�16) between the

types of defense systems found in E. coli genomes within

phylogroups and the genetic relatedness of these genomes,

with the exception of phylogroups A and B1 (r = 0.02–0.12,

p < 2.22 3 10�16), as indicated by the mash distance analysis

(Figure S1C). These observations indicate that, although HGT is

an important route of defense system acquisition, vertical inher-

itance plays a major role in the evolution of the immune reper-

toires, at least at short phylogenetic distances. The low corre-

lation in phylogroups A and B1 likely reflects ecological

differences between subclades in which case HGT apparently

becomes a defining factor.

In summary, our analysis of the distribution of defense sys-

tems across E. coli genomes demonstrates associations be-

tween specific defense systems and individual phylogroups,

likely driven by selection for sets of defense mechanisms

capable of efficiently protecting the bacteria against the specific

repertoires of phages and other MGEs that they encounter in

their respective environments.

117 pairs of defense systems co-occur in E. coli

In previous studies, some defense systems have been shown to

interact, resulting in enhanced or expanded protection against
Seq database. Phylogroups are color-coded according to the key.

mean number of defense systems is indicated by a red line.

re organized from the most prevalent (left) to the least prevalent (right), and their

o the mechanism of the defense system. The remaining bar graphs show the
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phages.30,32–35 Here, we sought to determine whether specific

defense systems co-occurred more frequently than expected

in bacterial genomes, potentially indicating interactions between

different defense mechanisms enhancing protection against

phages. To this end, we explored correlations between the oc-

currences of pairs of defense systems in E. coli genomes cor-

rected for phylogenetic bias; we deemed such a correction to

be essential because, as shown above, vertical inheritance of

defense systems is common (see STAR Methods). This analysis

allowed us to identify pairs of defense systems that appear

together in the same genome significantly more (co-occurring)

or less (negatively associated) frequently than expected based

on their individual prevalence (Table S3; Figure 2A).

Our analysis revealed that 171 interacting pairs of defense

systems (6.8% of all the analyzed pairs) were significantly

correlated, positively or negatively (Pagel test for binary traits,

with Bonferroni correction for multiple tests). Of these, 117

pairs were co-occurrences (68.4% of the correlated pairs),

and the rest were cases of negative association. With the

more permissive Benjamini-Hochberg correction, 265 pairs of

defense systems (10.7% of the analyzed pairs) were signifi-

cantly correlated, of which 211 (79.6%) were co-occurrences

(Figure 2B). Notably, although the network of co-occurrences

and especially of exclusions between the E. coli defense sys-

tems was sparse (Figures 2 and S2A), each system significantly

co-occurred with at least one other system, and typically, with

two or more under the permissive correction, and for most, at

least one significant co-occurrence was detected under the

strict correction, too (Table S3). Thus, co-occurrence between

defense systems is a widespread phenomenon that involves

(nearly) all such systems identified in E. coli. The greatest num-

ber of significant co-occurrences was observed for the CRISPR

I-E system that is found in the majority of the E. coli genomes,

but several less common systems, such as AbiE, PsyrTA, and

Septu I, also appeared to be particularly prone to co-occur-

rence with other systems (Table S3). Some of the co-occurring

pairs appeared striking in that the great majority of the instan-

tiations of the rarer system in the pair were found in genomes

that also carried the more common system, suggestive of a

functional dependence and indeed their interaction was better

described by the dependent model (Table S3). For example,

856 of the 947 instances of Mokosh II co-occurred with RM

IV, and 2,148 of the 2,518 instances of Zorya II co-occurred

with Druantia III (Figure 2A; Table S3).

Notably, different subtypes of the same defense system

displayed distinct co-occurrence patterns with other systems

(Figures 2B and S2B). For example, while Druantia III co-

occurred with 8 other defense systems, no co-occurrences
Figure 2. Co-occurrence and negative association among defense sys

(A) Graphical representation of the co-occurrence analysis, depicting one pair of

associated (Zorya II and ietAS). The nodes of the E. coli phylogenetic tree are colo

Their location in chromosome, plasmid, or prophage regions is indicated in the mi

the pair are shown.

(B) Co-occurrence of defense system pairs in E. coli. Co-occurring systems are

correlation between pairs was calculated with Pagel test for binary traits. Asteri

Hochberg correction (*) or the most stringent Bonferroni correction (**) for multip

ered. The defense systems are color-coded according to their broadly defined m

(C and D) Distance histograms of (C) all and (D) co-occurring defense system p

encoding defense systems is shown by a red line. The analysis considered only
were found for Druantia I (Bonferroni correction). CBASS I,

composed of cyclase and effector proteins, and CBASS II, char-

acterized by the presence of cGasylation proteins cap2 (E1-E2

fusion) and cap3 (JAB),19,46 co-occurred with distinct defense

systems. CBASS I co-occurred with DndABCD and DndFGH

(which also co-occurred with each other), qatABCD, and RM I

and IV, whereas CBASS II co-occurred with CRISPR-Cas type

I-E, Hachiman I, and tmn. These specific co-occurrences might

reflect distinct cooperative interactions between the respective

defense system subtypes.

Conversely, we observed 54 (2.2%) pairs of defense sys-

tems that were negatively associated, such as CRISPR-Cas

type I-E and RM I (Figure 2B). Similar to the number of co-oc-

currences, the number of significant exclusions notably varied

across defense systems, with some, for example, RM IV,

CRISPR I-E, and Dpd appearing particularly prone to avoiding

other systems (Figure S2B). Interestingly, RM IV and BREX I

were negatively associated in E. coli, even though previously

shown to co-occur on a plasmid-encoded defense island

and provide complementary protections against modified

(RM IV) and non-modified (BREX I) invading DNA in Escheri-

chia fergusonii.30 However, here, we consolidated all sub-

types of RM IV together, and the majority of occurrences in

our dataset were in the chromosome, showing that the

observed pattern in E. fergusonii was specific and differed

from the typical behavior of RM IV. Additionally, location of

one of the systems within an integrated element, such as pro-

phage, can lead to negative association with systems active

against that MGE, as it potentially happens in the case of ie-

tAS and Zorya II (Figure 2A). The RM-like Dpd system, which

acts by inserting 7-deazaguanine derivatives into the host

DNA to distinguish it from the non-modified invading DNA,47

was found to be negatively associated with several RM and

RM-like systems, such as RM I, RM III, RM IV, BREX I,48–50

Druantia III,2 and DndABCD and DndFGH.9

Similar to the co-occurrence patterns, the patterns of negative

association showed substantial differences among subtypes of

the same defense system (Figures 2B and S2B). In most cases,

however, the exclusivity between defense systems was not

strict, that is, the respective pairs were observed together in

some genomes (Table S3). This observation implies that the ex-

clusivity is not caused by incompatibility between the respective

systems resulting in negative epistasis,32 but rather by genetic

drift due to functional redundancy or by selection against such

redundancy.

Overall, our results indicate that both non-random co-occur-

rence and (partial) negative association among defense systems

are common in E. coli.
tems in E. coli

defense systems that co-occur (Gabija and tmn) and one pair that is negatively

red according to the presence or absence of the defense system in each strain.

ddle. For visualization purposes, only leaves that carry at least one system from

shown in orange, and negatively associated systems are shown in green. The

sks show correlations that were significant after the less stringent Benjamini-

le testing. In the main text, the results after Bonferroni correction are consid-

echanism of defense.

airs in 2,164 complete E. coli genomes. The median distance between genes

those pairs that significantly co-occurred after Bonferroni correction.
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Co-occurrence of defense systems is not tightly linked
to physical proximity
Defense systems often cluster together in defense

islands,2,4,5,7,24,26 which has been hypothetically attributed to

fitness benefits conferred by such clustering on bacteria living

in environments with high phage loads.28 In particular, clustering

of defense systems in defense islands, especially within inte-

grated MGEs, increases the likelihood of horizontal co-trans-

fer.51 Therefore, if the defense system repertoire is predomi-

nantly shaped by HGT, and not by any functional benefits, the

co-localizing systems will also be the ones that we observed

as co-occurring in E. coli. To investigate the potential connection

between the co-occurrence and co-localization of defense sys-

tems, we analyzed the genomic distance between defense sys-

tems in all complete E. coli genomes (2,164) and showed that

co-occurring defense systems were generally not located signif-

icantly closer to each other in the genome compared with the

average distance between defense systems (Figures 2C and

2D). Thus, in general, the physical proximity of defense systems

within the genome, although likely facilitating their concomitant

horizontal transfer, does not appear to play a defining role in their

co-occurrence.

Nonetheless, there are some exceptions where co-occurring

defense systems did indeed non-randomly co-localize. These

include Mokosh II and RM IV, Druantia III and RM I, Druantia III

and RM IV, RM I and RM IIG, RM IIG and Zorya II, Druantia III

and Zorya II, Druantia III and RM IIG, Gabija and tmn,

DndABCDE and DndFGH, CBASS I and qatABCD, RM III and ie-

tAS, and RM IV and SoFic (Figure S2C). Of these pairs, only

DndABCDE and DndFGH were previously reported to co-

localize and functionally interact.52,53

Co-occurring defense systems act synergistically to
counter phage infection
Next, we sought to explore whether the co-occurrence of de-

fense systems is driven by their complementary activities31 or

synergistic molecular cooperation.29,30 To this end, we selected

three pairs of significantly co-occurring defense systems found

in E. coli strains from our collection: Gabija and tmn that co-

localize frequently in plasmids, Druantia III and Zorya II that

co-localize in the chromosome, and ietAS and Kiwa that do

not co-localize (Figure S2C). Additionally, we tested the nega-

tively associated combination of Zorya II and ietAS. These sys-

tems were individually or jointly cloned into the E. coli strain

BL21-AI (Figure 3A), which harbors the defense systems Retron

II-A, Mokosh II, RM I, and RM IV. Among these, RM I co-occurs

with Druantia III, and RM IV co-occurs with Zorya II and Druan-

tia III (Figure 2B, considering the most stringent Bonferroni

correction). Nevertheless, using the same genetic background

across all experiments and assessing the isolated effects of de-

fense systems within this background ensures that observed

effects result from the interaction between the tested defense

systems. We assessed the effects of the defense systems on

phage resistance using efficiency of plating (EOP) assays with

a panel of 29 phages. This experiment demonstrated limited

anti-phage activity for all single systems, with the exception

of Gabija, which provided strong protection against multiple

phages (Figure S3A). Combinations of the defense systems

substantially increased the protection levels against specific
6 Cell Host & Microbe 32, 1–16, April 10, 2024
phages. To further quantify these effects, we calculated the

epistatic coefficients by comparing the combined effect of

the defense system pair with the sum of the individual effects

of the two partners. The results showed that all tested combi-

nations of defense systems, with the exception of ietAS

and Kiwa, displayed significant synergistic effects against at

least some phages in our panel, with even the negatively asso-

ciated pair Zorya II and ietAS showing unexpected synergy

(Figures 3B and S3A).

To further validate the findings from the EOP assays, we per-

formed time post infection assays using phages T1 and T3 to

assess the impact of the defense system combinations on

phage propagation in liquid cultures. The results from these as-

says consistently confirmed the synergy as the combinations of

defense systems led to a reduction in phage propagation that

significantly exceeded the sum of the individual effects

(Figures 3C and S3B). This synergistic trend was observed

for phage T1 with Gabija and tmn, for T1 and T3 with Druantia

III and Zorya II, and for T3 with Zorya II and ietAS. Even the

combination of ietAS and Kiwa, which showed no significant

synergy in the EOP assays (Figure 3B), displayed a minimal

but detectable synergy against T3 propagation (Figure 3C).

Moreover, the synergy was not restricted to phages targeted

by both individual systems. For example, T1 was not affected

by Gabija alone, but the combination of Gabija and tmn re-

sulted in an increased protection compared with tmn alone

(Figure 3C). For the negatively associated pair Zorya II and ie-

tAS, only Zorya showed substantial activity against phage T3,

but the combination with ietAS resulted in an improved reduc-

tion in phage propagation.

Additionally, we assessed synergy between defense systems

in terms of bacterial survival by measuring the absorbance of

bacterial cultures over time when infected with phages at

different multiplicities of infection (MOIs) (Figure 3D). To quan-

tify the synergy in these assays, we compared the areas under

the curve (AUCs) above the OD at the experiment start for indi-

vidual systems and their combinations. These additional results

from liquid cultures were consistent with the findings from the

EOP and phage propagation assays, providing further evidence

of synergistic interactions between the defense systems. We

observed synergy occurring at low MOIs, resulting in increased

bacterial survival. However, at higher MOIs, all bacterial cul-

tures collapsed, likely due to overwhelming of the defense sys-

tems or abortive infection. In the case of Gabija and tmn,

increased bacterial survival was not observed at low MOIs for

the combination of systems because tmn alone was sufficient

to restore normal growth of T1-infected bacteria (Figures 3D

and S3C).

Taken together, our assays provided robust evidence that

some of the significantly co-occurring defense systems display

synergistic activity against specific phages. This bolsters the

notion that co-occurrence is maintained by environmental se-

lection favoring combinations that are beneficial for the bacteria

given the particular virome composition in their niche. Addition-

ally, the observation that negatively associated defense sys-

tems in some cases also display synergistic activity suggests

that inherent mechanistic incompatibilities between defense

systems are unlikely to be a major driver of their mutual

avoidance.
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Figure 3. Defense system pairs provide synergistic anti-phage activity

(A) Experimental setup for the assessment of the anti-phage activity of individual defense systems and their combinations. YFP, yellow fluorescent protein.

(B) Heatmap of synergy score of protection provided by selected defense system pairs against a panel of 29 phages. The synergy score is the epistatic coefficient

for pairs of defense systems (see STAR Methods). Null, EOP equivalent to the defense provide by one system; Additive, EOP corresponds to the combined

defense of the two individual systems; Synergy, EOP exceeds the collective defense of the two systems. Data are shown as the average of three biological

replicates. ** Statistically significant (p < 0.01).

(C) Time post-infection assays, measuring T1 or T3 titers over the course of four hours in liquid cultures of E. coli containing individual or combined defense

systems. Data are shown as the average and standard deviation of three biological replicates.

(D) Bacterial growth under phage predation at different multiplicities of infection (MOIs), represented as area under the curve (AUC) in OD,h. A defense system

pair acts synergetic when its dot (red) is above the expected additive effect (blue). Data are shown as the confidence interval of three biological replicates. The raw

data and growth curves used to calculate the AUCs are available on the associated GitHub: https://github.com/garushyants/

synergy_bacterial_immune_systems/ and Zenodo: https://zenodo.org/doi/10.5281/zenodo.10075783 databases.
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Defense system co-occurrence is not conserved across
bacterial taxa
Genomic analyses show that increasing phylogenetic distance

between bacterial species, decreases the rate of HGT.54–57 In

particular, the host ranges of most phages are narrow so that

transduction occurs mostly within the host species bound-

aries.58 Similarly, only a small fraction of plasmids has been

shown to cross the interspecies barrier.59–61 Considering these

limitations of HGT along with (largely) non-overlapping vi-
romes,22 it could be expected that the co-occurrence of defense

systems is poorly conserved among bacteria. To test this

prediction, we extended our analysis to four bacterial orders, Ba-

cillales, Burkholderiales, Enterobacterales, and Pseudomona-

dales. We first examined the sets of defense systems present

in these bacteria. The different bacterial orders displayed varia-

tions in the type and abundance of defense systems (Figure S4A).

For example, RM systems were the most prevalent in Bacillales,

Enterobacterales (including E. coli), and Pseudomonadales,
Cell Host & Microbe 32, 1–16, April 10, 2024 7
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Figure 4. Patterns of defense system co-occurrences across bacterial taxa

Heatmap of defense system co-occurrence patterns in E. coli (n = 26,362) and in four bacterial orders: Enterobacterales including E. coli (n = 9,124), Bacillales (n =

3,952), Burkholderiales (n = 2,199), and Pseudomonales (n = 1,288). Gray squares indicate that at least one system in the pair is not present in the taxonomic

group. *Co-occurrence significant after Benjamini-Hochberg correction; **Co-occurrence significant after Bonferroni correction.
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whereas Burkholderiales were characterized by a higher abun-

dance of dXTPase, Zorya III, and Mokosh I. Additionally,

while CRISPR I-E was abundant (50.6%) in Enterobacterales

(including E. coli), its prevalence was markedly lower (<6.1%)

in the other orders. Nonetheless, when considering all four or-

ders and one extensively characterized species (E. coli), they

collectively shared 86 defense systems in common, with only a

few systems unique to each of them (2 in E. coli, 17 in Bacillales,

4 in Enterobacterales, 2 in Pseudomonadales, and 1 in Burkhol-

deriales) (Figure S4B).

As anticipated, the specific pairs of co-occurring and nega-

tively associated defense systems differed across the taxa.

Moreover, multiple pairs of defense systems that co-occurred

in one order were found to be negatively associated in another

(Figure 4). For instance, AbiE and RM I co-occur in Bacillales

and Enterobacterales but are negatively associated in Burkhol-

deriales. Similarly, CBASS type II and CRISPR-Cas type I-E

co-occur in Enterobacterales but are negatively associated in

Pseudomonadales. These findings indicate that negatively asso-

ciated systems are not inherently functionally incompatible or
8 Cell Host & Microbe 32, 1–16, April 10, 2024
redundant. Rather, the interactions between these systems likely

depend on environmental and genetic factors that select for a

particular anti-phage immunity strategy. Overall, our results

indicate that defense systems are generally mechanistically

compatible, allowing bacteria to adopt diverse, flexible strate-

gies for anti-phage defense based on their unique environmental

and genetic contexts.

Synergistic immunity provides an evolutionary
advantage to bacterial populations
Due to our observations, we reasoned that co-occurring and

synergistic defense systems could provide advantages at the

population level. To assess the evolutionary and ecological

impact of synergistic interactions between defense systems,

we performed a short-term evolution experiment using chromo-

genic reporter plasmids expressing engineered coral chromo-

proteins.62,63 We mixed populations of strains containing either

an individual defense system and a second, ‘‘empty’’ chromo-

genic plasmid, or carrying two defense systems on separate

plasmids. These populations were then infected with either a



A

B

C

Figure 5. Synergistic defense system pairs provide an evolutionary advantage to bacteria

(A) Setup of experimental evolution assay of defense systems using chromogenic plasmids (left). Cells containing a single defense system carry a second plasmid

that expresses a chromogenic reporter. Cells with defense system combinations weremixed in equal proportions with cells with single systems and infected with

phage. After 1, 2, and 3 days, cells were plated, and the colonies of different colors were enumerated. A surface receptor assay (right) assessed the influence of

receptor mutants on the outcome of the evolution assays by subjecting colonies of different colors to phage infection in plaque assays.

(B) Prevalence of receptor mutants in the bacterial population during the evolution assay. The proportion of colonies with the wild-type receptor is represented as

positive in the vertical axis, while the proportion of colonies with mutated receptor is shown as negative. Colonies with mutated receptor were identified by their

complete resistance to phage infection in spot assays.

(legend continued on next page)
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phage shown to trigger a synergistic defense, or a phage eliciting

no obvious synergy between the respective defense systems.

Over a period of 3 days, wemonitored the proportion of the pop-

ulation carrying one or both defense systems by counting col-

ony-forming units of different colors (Figure 5A). We confirmed

that all plasmids were stably maintained in the populations

throughout the experiment using plasmid loss assays, ruling

out any influence of plasmid loss due to toxicity on the outcomes

(Figures S5A and S5B). Further, given that resistant receptor mu-

tants tend to spread in bacterial populations shortly after phage

infection,64 we investigated whether this factor influenced the

outcome of our short-term evolution experiments by evaluating

the capacity of the phage to infect bacterial colonies retrieved

from the experiment. Since the defense systems under examina-

tion in this study do not offer full protection against phage infec-

tion, the absence of infection indicates the emergence of recep-

tor mutants leading to complete phage resistance. We observed

a limited effect of receptor mutants on phage resistance, with

greater relevance at high phage MOI (Figure 5B).

The results showed that in the absence of phage, populations

containing either individual or combined defense systems re-

mained relatively stable, and thus, these systems were minimally

toxic to the cells, if at all (Figure 5C). However, after exposure to

phage infection at high or low MOI, a clear shift in the population

composition toward cells harboring both defense systems was

observed starting from day 1. This shift was pronounced in cul-

tures infectedwith the phage that elicited synergistic defense (T1

for Gabija and tmn, T3 for Druantia III and Zorya II, and T3 for ie-

tAS and Zorya II). In cases the defense was not synergistic

(Lambda for Gabija and tmn, phi113 for Druantia III and Zorya

II, and T7 for ietAS and Zorya II), the outcomes varied. For Druan-

tia III and Zorya II, as well as Zorya II and ietAS combinations,

cells carrying both the combination of systems and the individual

system active against the phage (Druantia III and Zorya II,

respectively; Figure S3A) became predominant in the popula-

tion. However, in the case of the Gabija and tmn combination,

the system that was not active against the phage (tmn) domi-

nated (Figure S3A). This discrepancy can be attributed to the

considerably higher efficiency of Gabija against phage Lambda

(105-fold) compared with that of Druantia III against phi113

(101-fold) and Zorya II against T7 (101-fold) (Figure S3A). This

result suggests that the phage population was more effectively

reduced when Gabija was active, allowing other cells in the pop-

ulation, even those lacking active defenses against the phage, to

survive. In the case of the Gabija-tmn combination, the reduction

in the population of cells containing the active system, Gabija,

was likely due to the abortive infection phenotype of this defense

system.65

These results underscore the pivotal role played by the degree

of protection provided by specific, active sets of defense sys-

tems in the survival of phage-sensitive cells within a heteroge-

neous population, thereby shaping the dynamics of coexisting

defense systems. Overall, the competition experiments validate

the evolutionary advantage of synergistic defense system com-
(C) Percentage of colonies from the evolution assay that carry each individual defe

low or high multiplicity of infection (MOI), compared with a non-infected control. D

with individual counts shown. *p value < 0.01, **p value < 0.001 determined by

sponding uninfected control.
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binations against specific phages. Moreover, these findings also

emphasize the substantial impact of factors such as the type and

abundance of the encountered phages, as well as the effective-

ness of the defense systems, on the resulting dynamics of the

bacterial population.

Tmn co-opts the ATPase domain of Gabija for synergy
To better understand the molecular mechanisms underlying the

observed synergistic effect between defense systems, we

focused on the combination of Gabija and tmn. This choice

was motivated by several factors. Gabija has been well charac-

terized previously, in contrast to all other tested defense sys-

tems, providing molecular detail2,65–67 that helps understanding

the synergy with the less thoroughly characterized tmn.3 Further-

more, Gabija and tmn tend to physically co-localize on plasmids

(Figure S2D). Comparison of plasmids carrying both tmn andGa-

bija showed pronounced genetic variability, except for regions

that encompass conjugation-related genes and these particular

defense systems (Figure 6A). Gabija and tmn, along with type II

TA systems such as VapBC, are specifically located in the lead-

ing region of the plasmid. This region is crucial for maintaining

plasmid stability during conjugation68,69 and is enriched in anti-

defense genes,70 which protect conjugative plasmids from

host defense systems during the initial stages of plasmid inva-

sion. The conserved location of Gabija and tmnwithin the leading

region of plasmids suggests that they play a critical role in

plasmid maintenance. By allowing the plasmid to fend off other,

competingMGEs, these systems likely ensure the plasmidmain-

tenance in the cell, and with it, the evolutionary success of this

defense system combination in the face of ongoing inter-MGE

conflicts.29

To explore the mechanism of synergy between tmn and Ga-

bija, we focused on determining the specific contributions of

the functional domains of the individual defense systems to the

synergistic anti-phage activity. We introduced point mutations

into these functional domains and assessed their effects on the

individual defense systems and their combination using EOP

assays.

In tmn, mutations of conserved residues of the P-loop NTPase

domain (G66A/K67A, and R276A/R279A) abolished protection

by tmn and the synergy with Gabija against phage T1 (Figure 6B).

In Gabija, the ABC ATPase domain of GajA senses the depletion

of cellular nucleotides during phage infection, activating the DNA

binding and nicking activity of its TOPRIM nuclease domain.67

Introduction of nicks into the DNA activates nucleotide hydroly-

sis by the UvrD-like helicase domain of GajB, depleting essential

nucleotides and leading to abortive infection.65 Surprisingly, we

observed that only the nucleotide-sensing ATPase domain of

GajA appeared to be critical for the synergy with tmn (Figure 6B)

because mutations of conserved residues in the respective cat-

alytic sites65 of the TOPRIM and UvrD-like helicase domains

abolished protection by Gabija on its own but had no effect on

the synergy. The individual K35A and H317A mutations intro-

duced into the ATPase domain of GajA abolished Gabija
nse systemor their combinations at 1, 2, and 3 days post infection with phage at

ata are shown as the average of three biological and three technical replicates

multiple comparison for nested one-way ANOVA, comparing with the corre-
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Figure 6. Mechanistic insight into the synergistic interaction between tmn and Gabija or Septu I

(A) Whole-plasmid alignment of 104 plasmids containing tmn and Gabija from complete E. coli genomes with plasmid CP083423.1 as a reference (see STAR

Methods). The histogram shows the percentage of plasmids where the corresponding block from CP083423.1 was found. Annotated genes are colored by

function.

(B) Efficiency of plating (EOP) of phages T1 and 670 on cells expressing Gabija (G), tmn (T), Gabija and tmn (GT), and alanine mutants of specific functional

domains. The mutations are organized by functional domains of Gabija (ATPase, TOPRIM, and UvrD-like) and tmn (P-loop NTPase). Unfilled circles indicate

instances where it was not possible to determine the number of phage plaques, hence a value of 1 was assumed at the corresponding dilution. Asterisk (*)

indicates cases of synergy. The bars represent the average of three biological replicates.

(C) EOP of phages T1 and 670 on cells expressing tmn (T), Gabija (G), and tmn with either GajA or GajB. Unfilled circles indicate instances where it was not

possible to determine the number of phage plaques, hence a value of 1 was assumed at the corresponding dilution. The bars represent the average of three

biological replicates.

(D) EOP of phages T1 and phi113 on cells expressing tmn (T), Septu I (S), PrrC (P), Septu I and tmn (ST), or PrrC and tmn (PT). Unfilled circles indicate instances

where it was not possible to determine the number of phage plaques, hence a value of 1 was assumed at the corresponding dilution. Asterisk (*) indicates cases of

synergy. The bars represent the average of three biological replicates.

(E) EOP of phages T1 and 670 on cells expressing tmn (T), Septu (S), and Septu and tmn (ST), and variants with point mutations in specific functional domains. The

mutations are organized by functional domains of Septu I (ATPase and HNHc) and tmn (P-loop NTPase). Unfilled circles indicate instances where it was not

possible to determine the number of phage plaques, hence a value of 1 was assumed at the corresponding dilution. Asterisk (*) indicates cases of synergy. The

bars represent the average of three biological replicates.
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activity but only H317A abolished the synergy with tmn. The his-

tidine residue H317 has been shown previously to play a role in

inhibiting the nicking activity of GajA in the presence of ATP, sug-

gesting that this histidine is critical for sensing the nucleotide

levels in the cell65 and for the synergy with tmn.
Gabija forms a supramolecular complex composed of a GajA

tetramer with two sets of GajB dimers docked on opposite

sides.66 While the helicase function of GajB and the TOPRIM ac-

tivity of GajA do not appear to be required for the synergy with

tmn, we sought to determine whether the intact complex was a
Cell Host & Microbe 32, 1–16, April 10, 2024 11
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critical factor for the molecular interactions leading to synergy.

We introduced stop codons into each Gabija protein-coding

sequence and assessed the impact of halted protein translation

on the synergy with tmn. Our findings indicate that GajA alone

could not synergize with tmn (Figure 6C), highlighting the neces-

sity of forming an intact GajAB supramolecular complex for the

synergy.

These findings demonstrate the critical role of the ATPase do-

mains of both GajA and tmn in driving the synergy between these

defense systems. More specifically, the ABC ATPase domain of

GajA enhances the activity of tmn, emphasizing the central role

of tmn in the synergistic combination. The molecular mechanism

of tmn enhancement remains to be elucidated. Tmn is a KAP

NTPase,3 characterized by the presence of two transmembrane

helices inserted into the P-loop NTPase domain, which anchor

tmn in the membrane such that the P-loop domain is located

on the intracellular side.71 Because most P-loop ATPases are

multimers (most commonly, hexamers72), we modeled the tmn

dimer using Alphafold2 (pLDDT score 89.1) (Figure S6A) and

observed that the residues (P177-P198) situated between the

two transmembrane helices are likely located in the periplasmic

region. This periplasmic loopmight be involved in the recognition

of phage components resulting in the activation of the NTPase. It

has been proposed that the function of the KAP NTPase domain

is the regulation of assembly/disassembly of other protein com-

plexes that interact with the extended surfaces provided by the

a-superhelical structural domains of tmn, in an NTP-dependent

manner.71 Hence, the ABC ATPase of Gabija might assist the

NTPase domain of tmn in this regulation, increasing the down-

stream response, by amechanism that remains to be elucidated.

Overall, our exploration of the synergistic interaction between

tmn and Gabija revealed a specific molecular interplay between

these systems, highlighting the pivotal role of the distinct ATPase

domains of each of these defense systems.

Synergy between tmn and defense systems containing
sensory switch ATPases
Because tmn appears to be the main driver of the synergy with

Gabija, we examined the domain architectures of the other de-

fense systems that significantly co-occurred with tmn, namely,

AbiL, PrrC, PsyrTA, Septu I, and CBASS II (Figure 2A). Except

for CBASS II, all these systems, including Gabija, contain

ATPase domains associated with effectors that likely cause

DNA or RNA damage,2,73–75 suggesting a potential shared

mechanism underlying synergistic interactions with tmn. To

test this hypothesis, we analyzed the anti-phage defense pro-

vided by tmn when combined with the co-occurring systems

Septu I and PrrC. As observed for tmn and Gabija, the combina-

tion of tmn with Septu I or PrrC demonstrated synergistic effects

against specific phages (Figure 6D). The synergy between tmn

and Septu I was consistently observed when using Septu I

gene clusters from different E. coli strains (Figure S6B).

We further characterized the synergy between tmn and Septu I

by introducing mutations into critical residues of Septu I. Muta-

tions in the Walker A (K43A), Walker B (D316A/E317A), and

D-loop (H321) regions of the ATPase domain of PtuA, as well

as in the predicted Mg2+ binding site (K6A) and active site

(H75A) of the HNHc nuclease domain of PtuB, resulted in the

loss of synergy against phage T1, indicating the essential role
12 Cell Host & Microbe 32, 1–16, April 10, 2024
of both proteins in the synergy (Figure 6E). Both PtuA and PtuB

proteins act as toxins of the retron Ec78 defense system, and

it was proposed that PtuA, similarly to GajA in Gabija, is activated

by NTP depletion during phage infection.76 This feature is also

observed in the PrrC defense system, where the ATPase domain

of PrrC is inhibited by ATP and guanosine triphosphate (GTP),

alongside negative regulation by the RM systemPrrI. The release

of this inhibition, triggered by phages deploying anti-restriction

peptides that inhibit the PrrI restriction enzyme, leads to GTP

hydrolysis and activates the C-terminal anti-codon nuclease

(ACNase) HEPN domain.74,77,78 The PsyrTA,75 also known as

RqlHI,79 and AbiL73 defense systems, which co-occur with

tmn, likely function in a similar manner, given that the ATPase

containing proteins of these systems have been shown to inhibit

the toxic activity of the other protein.

In summary, our results show that tmn synergizes with various

defense systems containing ATPase domains that function as

sensory switches unmasking the associated effector domains,

as observed here with Gabija, PrrC, and Septu I. These domains

likely aid the NTPase domain of tmn in controlling its down-

stream response. Further exploration of the mechanisms of

these defense systems is expected to provide deeper insights

into the synergistic interactions.

DISCUSSION

In this work, we aimed to gain insights into the interactions be-

tween defense systems and the impacts of such interactions

on bacterial immunity against phage predation both at cellular

and population level. By comprehensive analysis of thousands

E. coli genomes, we identified patterns of co-occurrence as

well as negative association among defense systems. We

showed that the co-occurrences are not conserved in more

distant bacteria, suggesting the existence of many distinct de-

fense strategies. Perhaps unexpectedly, we found that the co-

occurrence among defense systems was not strongly linked to

their co-localization in bacterial genomes, although we did iden-

tify several instances in which co-occurring systems co-local-

ized. In several specific cases we explored, co-occurrence of

both co-localizing and non-co-localizing pairs of systems was

associated with synergistic interactions, which led to a signifi-

cantly greater protective effect against specific phages than ex-

pected from the sum of the effects of individual systems.

Notably, we observed a synergistic protective effect against

certain phages even between some negatively associated de-

fense systems, such as Zorya II and ietAS. Furthermore, we

found that defense systems that are negatively associated in

one bacterial order can co-occur in others, suggesting that the

negative association between these systems is not caused by

mechanistic incompatibility leading to negative epistasis. We

also assessed the ecological implications of defense system

synergy in short-term competition experiments, finding that bac-

terial populations carrying synergistic systems gained an evolu-

tionary advantage over populations carrying any of the individual

systems when targeted by specific phages that activated the

synergistic defense.

Consistent with other studies,22,24,25,31 we observed an

average of 5–7 defense systems per genome. This limited abun-

dance of defense systems is likely due to the fitness cost
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incurred by each of them such that the defense landscape is

shaped by the trade-off between the benefits of protection

against multiple viruses and the cumulative cost of multiple de-

fense mechanisms. Our tests with negatively associated pairs

of defense systems, although limited in scope, revealed no

discernible fitness disadvantages, suggesting that the cost of

defense systems is largely additive, without substantial negative

epistasis.

Collectively, our results strongly suggest that interactions be-

tween defense systems are common and that non-random co-

occurrence of defense systems in bacteria is an adaptive phe-

nomenon driven by selection for enhanced immunity against

specific phages. The defense strategies appear to differ sub-

stantially across bacterial taxa, most likely, driven by the spe-

cies-specific viromes. Given the extensive horizontal transfer

of defense systems, the evolution of bacterial defense strategies

appear to follow the venerated general principle of adaptive evo-

lution of microbes ‘‘everything is everywhere but the environ-

ment selects.’’80

We further investigated the molecular basis of the synergistic

interactions between tmn and its co-occurring defense systems

Gabija, Septu I, and PrrC and uncovered a common mechanism

of synergy, whereby tmn co-opted the sensory switch ATPase

domains of the companion defense system, enhancing the

anti-phage activity. These synergistic interactions and co-opting

mechanisms likely play an important role in the evolution of de-

fense systems and the emergence of multiple defense system

variants, as observed for CRISPR-Cas,81 CBASS,19 Lamassu,6

Shield,82 and others. The modularity of anti-phage immunity is

further evident in sharing of proteins and functional domains

across distinct defense systems,83 such as HNH-endonuclease

in Septu, Zorya II, and type II CRISPR-Cas2; NucC in CBASS III84

and CRISPR-Cas type III,85; TOPRIM domain in Gabija,3 Wad-

jet,2 and PARIS,4; and P-loop NTPases, including helicases, in

a broad diversity of defense systems including CRISPR-Cas

type I, Gabija, PrrC, tmn, and many others.2,3,74 Expanding our

understanding of the mechanisms underlying the modularity of

defense systems is expected to provide insights into their adap-

tive potential and evolutionary dynamics in the perennial arms

race between bacteria and phages.

The results of this work underscore the importance of consid-

ering the interplay among defense system beyond their cumula-

tive effect, taking into account the environmental context and the

influence of phage pressure, for understanding prokaryotic im-

munity in its increasingly apparent complexity. Adaptation of

prokaryotes to specific environments is driven by specific selec-

tive forces imposed by the virome, resulting in unique fitness

landscapes in each niche. Thus, future research should aim to

explore the broader patterns of defense system combinations

in diverse prokaryotes in their specific ecological niches.

Limitations of the study
In this work, we investigated in detail the co-occurrence and

negative association among the known defense systems only

among isolates of a single bacterial species, E. coli. Our prelim-

inary analysis of defense system co-occurrence in other bacte-

rial orders revealed substantially different patterns emphasizing

the importance of a broad exploration of bacterial immunity. Our

mechanistic investigation of synergistic defense systems was
obviously even more limited so that much further work is

required to determine how general the domain co-option

observed here might be and what other mechanisms contribute

to the synergy. Moreover, the defense systems were expressed

from plasmids, with gene dosage effects known to impact the

protection range.86 However, this is unlikely to confound our

identified synergies, given the consistent expression levels of

each defense system in both individual and combined

configurations.
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59. Iranzo, J., Puigbò, P., Lobkovsky, A.E., Wolf, Y.I., and Koonin, E.V.

(2016). Inevitability of Genetic Parasites. Genome Biol. Evol. 8,

2856–2869.

60. Koonin, E.V. (2016). Horizontal gene transfer: essentiality and evolvability

in prokaryotes, and roles in evolutionary transitions. F1000Res 5. F1000

Faculty Rev-1805.
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Q5 DNA polymerase New England Biolabs Cat# M0491L

TAE 50X Melford Cat# T60015-1000.0

Critical commercial assays
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Viability Assay
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Deposited data
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Software and algorithms
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release/python-370/
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RapidNJ Simonsen et al97 https://github.com/somme89/rapidNJ
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Franklin L.

Nobrega (F.Nobrega@soton.ac.uk).

Materials availability
All unique bacterial strains, phages, and plasmids generated in this study are available from the lead contact without restriction.

Phages of SNIPR Biome are proprietary and can be shared with other non-competing parties upon written permission.

Data and code availability
d Raw data have been deposited at Github and Zenodo and are publicly available as of the date of publication. DOIs are listed in

the key resources table.

d All original code has been deposited at Github and Zenodo and is publicly available as of the date of publication. Links are listed

in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacteria
E. coli strain Dh5awas used to clone plasmids pACYCDuet-1 or 8A with individual defense systems. E. coli BL21-AI cells containing

plasmid(s) with the defense systemswere used for phage assays. All bacterial strains were grown at 37 �C in Lysogeny Broth (LB) with
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180 rpm shaking for liquid cultures, or in LB agar (LBA) plates for solid cultures. Strains containing plasmid pACYCDuet-1 or 8A were

grown in media supplemented with 25 mg/ml of chloramphenicol or 100 mg/ml of ampicillin, respectively.

Phages
Phages used in this study and their origins are described in Table S4. All phages were produced in LB with their host strain, centri-

fuged, filter-sterilized, and stored as phage lysates at 4 �C.

METHOD DETAILS

Defense system detection
The FASTA amino acid (FAA), FASTNucleic Acid (FNA), andGeneric Feature Format (GFF) files of 26,384 Escherichia coliwere down-

loaded from the NCBI Reference Sequence (RefSeq) Database. Complete genomes of 9,124 Enterobacterales, 1,288 Pseudomona-

dales, 3,952 Bacillales, and 2,199 Burkholderiales genomes were downloaded from Genbank in October 2021. Defense systems

were detected in these genomes using PADLOC version 1.1.0 with database version 1.4.092 and DefenseFinder version 1.0.8.22 De-

fense systems outputted by PADLOC in categories other and adaptation were removed from the analysis. Defense systems pre-

dicted by DefenseFinder to be located on different contigs or longer than 30kb were discarded. Some of the E. coli genomes had

extensive fragmentation, which negatively influenced the number of defense systems detected (two-sided Spearman, p < 0.001),

but the effect was small enough (rs = -0.06) that we opted to keep the fragmented genomes in our analysis. Defense systems found

in all strains can be seen on Table S1.

Contig characterization and prophage detection
Platon version 1.695 on accuracy mode was used to categorize bacterial contigs as plasmid or chromosome. Phigaro version 2.2.694

was used with default settings to detect prophages in the bacterial genomes. Contigs shorter than 20 kbp were excluded from this

analysis. Defense systems were considered to be located in a prophage region when at least one defense gene was fully within the

prophage limits.

Phylogenetic analysis
Mash v2.391 distances were used to reconstruct phylogenetic trees for each dataset. Pairwise mash distances were calculated, em-

ploying a sketch size of 1,000 for the E. coli dataset and 100,000 for the order-level datasets. These pairwise distances were trans-

formed into a distance matrix in phylip format, serving as input for the reconstruction of Neighbor-Joining phylogenetic trees with

RapidNJ.97

To remove potentially contaminated genomes from the phylogenetic trees, we implemented a three-step filtration process. First,

we applied TreeShrink v 1.3.998 with centroid rerooting, using a quantile threshold of 0.1 for the E. coli dataset and 0.05 for the order-

level datasets to remove leaves located on excessively long branches. Second, genomes with CheckM88 contamination greater than

5 in the BV-BRC database (https://www.bv-brc.org/) were excluded. Lastly, leaves without metadata in RefSeq or Genbank (as of

January 25, 2023), were removed from consideration due to potential errors in their genomic data. After filtration 26,362 genomes

of E. coli were retained.

For further validation of the phylogenetic trees of the order level datasets, we color coded the leaves according to their genus level

classification and visually confirmed their agreement with general taxonomy.

To additionally validate the phylogenetic tree for the E. coli dataset, we examined the proximity of samples from the same phy-

logroup in the tree. We employed phylogroup assignments from a dataset of 10,667 E. coli genomes,99 and observed that all major

clades contained genomes belonging to a single phylogroup. To extract clades containing samples from individual phylogroups, we

first employed TreeCluster v 1.0.3100 with a threshold parameter of 0.3, resulting in the division of the E. coli tree into 17 clusters.

Subsequently, we further divided phylogroups E1 and E2, and B1 and C using a custom R script. For each clade, we compiled

the list of nodes belonging to that clade and performed phylogroup-specific analysis. All tree visualization and manipulations

were performed using R v 4.1.2 with ggtree90 and phytools.93

Correlation between defense system content and phylogenetic distance
To investigate the relationship between defense system content and phylogenetic distance we performed a correlation analysis.

The phylogenetic distance between pairs of genomes was determined using mash distances obtained as described above. To

estimate the distance in defense system content between genomes, we employed Jaccard distance, which compares the pres-

ence and absence of defense systems in vectors. Defense systems present in less than 0.5% of genomes in the dataset were

excluded from this analysis. For all unique pairs of genomes included in the analysis, we calculated Spearman correlation co-

efficients, and corresponding p-values, to quantify the correlation between phylogenetic distance and the dissimilarity in de-

fense systems content.

Odds ratios for defense systems distribution between phylogroups
To test the hypothesis that defense systems are distributed unevenly among E. coli phylogroups, we performed a Chi-Squared test

for homogeneity. The enrichment analysis aimed to assess whether the presence of a specific defense system in a particular
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phylogroup deviates from what would be expected by chance. This was quantified by calculating the odds ratio as the ratio of the

observed number of genomes containing a particular system within a specific phylogroup to the expected number of genomes with

that system.

Analysis of co-occurrence of defense systems
Given that the genomes under study are related, the co-occurrence analysis required a phylogenetically informed approach. We uti-

lized the Pagel test for binary traits, as implemented in the R-package phytools with fitDiscrete model, to determine if pairs of defense

systems were non-randomly distributed across the phylogenetic tree, indicating potential interdependencies. This analysis consid-

ered only the presence or absence of defense systems, not taking into account their localization in the genome. To ensure robust

results and avoid artefacts associated with small sample sizes, systems that were present in less than 0.5% of genomes in the

E. coli dataset and less than 1% in the order-level datasets were excluded from this analysis. Leaves carrying the defense system

of interest were marked with ones, while leaves where the system was absent were marked with zeros. Prior to conducting the

test, we standardized tree branch lengths to a mean branch length of 0.1, as recommended in the original implementation of the Pa-

gel test outline in the BayesTraits manual.

We compared the results of the independent model with three alternative models: a) A model in which the distribution of two sys-

tems depends on each other; b) A model in which system A depends on system B; c) A model in which system B depends on system

A. If model (a) produced a significant p-value (< 0.01), we further investigated which of the three models best fitted the observed data

on the phylogenetic tree. For cases with significant p-value in model (a), we determined the directionality of interaction by using tran-

sition probabilities from the best fitted model. This involved two types of transition values: those assuming independent changes of

states (e.g. transition from state (0,0) where no system is present, to state (1,0) where system B is present) and those assuming

dependent changes of states (e.g. transition from state (0,1) to (1,1)). For each pair of transition values, we calculated the flux,

e.g. for the transition from (1,0) to (1,1), by dividing the transition rate from (1,0) to (1,1) by the transition rate from (1,1) to (1,0). If

the sum of fluxes into (1,1) exceeded the sum of fluxes from (0,0) to (1,0) and (0,0) to (0,1), we inferred that the systems co-occur;

otherwise, they were considered negatively associated.

To correct for multiple testing, we used both the Bonferroni correction (the most stringent) and the Benjamini-Hochberg correction

(less strict). Both sets of significant results after multiple testing correction were considered for downstream analysis, with a prefer-

ence for those after Bonferoni correction due to their higher reliability.

Analysis of proximity between defense systems
To assess whether co-occurring defense systems exhibited a tendency to co-localize in the genomes more frequently than random

pairs of neighbor defense systems within a genome, we compared the shortest distances between pairs of the co-occurring systems

with themean of the background distribution of the distances between defense systems. The background distribution was generated

by calculating distances between all neighbour pairs of defense systems across complete E. coli genomes. For each system, we

calculated the shortest distance to the neighbor system. When a system was located at the edge of a defense island, we considered

the distance to the next system within the same island rather than to the next island. Distances were calculated uniquely, ensuring

that if system A’s closest neighbor was system B and vice-versa, the distance between A and B was included in the analysis only

once. The mean of all calculated distances served as the conservative measure of the proximity between neighbor defense systems.

For additional details of the method employed for this analysis, see the positive_vs_negative_genome_distance.R script, available in

the associated Github: https://github.com/garushyants/synergy_bacterial_immune_systems/ or Zenodo: https://zenodo.org/doi/

10.5281/zenodo.10075783 repositories.

Defense system cloning
The plasmids constructed in this work are listed in Table S5, and the primers used can be found in Table S6. Plasmid

pACYCDuet-1 was modified to contain the pBAD promoter from plasmid 8A (MacroLab) by Gibson assembly. YFP, Druantia

III (from E. coli ECOR19), ietAS (ECOR52), and tmn (ECOR25) were cloned into the modified pACYCDuet-1 by Gibson as-

sembly. YFP, Kiwa (ECOR8), Gabija (ECOR49), and Zorya II (ECOR19) were cloned into plasmid 8A by Gibson assembly.

Coral chromoproteins spisPink and meleRFP (Stanford Free Genes) were cloned into plasmids 8A and pACYC, respectively,

by Gibson assembly. The plasmids were recovered in Dh5a cells, extracted using NucleoSpin Plasmid QuickPure Kit

(Thermo Fisher Scientific) and confirmed by sequencing at Plasmidsaurus (USA). Mutations of the defense system operons

were engineered by around-the-horn PCR, and confirmed by Sanger sequencing (Eurofins Genomics). Plasmids were trans-

formed individually or in combinations into competent BL21-AI cells prepared using the Mix&Go! E. coli Transformation

Kit (Zymo).

Efficiency of plating
Overnight cultures of the bacteria were diluted 1:50 in LB containing antibiotics, induced with 0.2% arabinose, and incubated for 5

hours before being used in double agar overlay assays. For this, bacterial cultures were mixed with 0.6% top agar and overlaid on

LBA plates. Ten-fold serial dilutions of the phage stocks were spotted onto the bacterial lawn and the plates incubated overnight at

37 �C. The phage plaques were counted and used to calculate the EOP relative to the control. Epistatic coefficients, representing the

interaction strength between defense systems, were determined as |Log10 (EOPsystem1+system2)| – |Log10 (EOPsystem1)| – |Log10
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(EOPsystem2)|. Synergy was considered when |Log10 (EOPsystem1+system2)| > |Log10 (EOPsystem1)| + |Log10 (EOPsystem2)| +1, additive ef-

fects were considered when Max [|Log10 (EOPsystem1)|, |Log10 (EOPsystem2)|] < |Log10 (EOPsystem1+system2)| < |Log10 (EOPsystem1)| + |

Log10 (EOPsystem2)| + 1, and antagonistic effects were considered when |Log10 (EOPsystem1+system2)| – Max (|Log10 (EOPsystem1)|, |

Log10 (EOPsystem2)|] < -1. Statistical significance was determined using the multiple comparison function from Two-way ANOVA

with a p-value of <0.01.

Time post infection assay
Overnight bacterial cultures were diluted to an optical density at 600 nm of 0.1 in LB containing antibiotics and 0.2% arabinose. The

cultures were infected with phage at anMOI of 0.0001. At 0, 1, 2, 3 and 4 hours post infection, a sample was taken and centrifuged at

12,0003 g for 2minutes. The supernatant was serially diluted, and the phages were quantified by plaque assay on a bacterial lawn of

cells with YFP. PFUs were counted after overnight incubation at 37 �C.

Liquid assay
Overnight bacterial cultures were diluted to an optical density at 584 nm of 0.25 in LB containing antibiotics and 0.2% arabinose. The

bacterial suspension was distributed into wells of a 96-well plate to which phage dilutions or LB were added. The plates were incu-

bated in a Fluostar Optima plate reader at 37 �Cwith shaking at 200 rpm,with optical density at 584 nmmeasured every 5min for 24 h.

To evaluate the impact of interactions between defense systems, we calculated the areas under the curve (AUC) for both individual

systems and combination of systems. To calculate the AUC, the optical density at the start of the experiment was subtracted from

each data point. If the AUC for a system combination exceeded the sum of the AUCs for the individual systems (the expected value),

we considered those system as having a synergistic protective effect.

Short-term evolution experiment
Overnight bacterial cultures with single or double defense systemswere diluted to an optical density at 600 nm of 0.1 in LB containing

antibiotics and 0.2% arabinose, and mixed in equal proportions. The mixed cultures were infected with phage at an MOI of 0.0001,

and incubated at 37 �Cwith shaking at 180 rpm for 24 h. A control without phagewas used. The cultures were centrifuged at 80003 g

for 10 min, and the cell pellet was washed three times with LB at 12,0003 g for 2 min. Cells were resuspended in 1 ml of LB, serially

diluted, and 100 ml of each dilution were spread onto LBA plates supplemented with antibiotics and 0.2% L-arabinose. The plates

were incubated overnight at 37 �Cand the colonies of each color counted. The experiment was repeated for 48 h and 72 h time points,

using 50 ml of the previous cultures to inoculate fresh LB containing antibiotics and 0.2% arabinose, and challenging the cultures with

phage at the same MOI.

Quantification of receptor mutants
Ten colonies were selected for each time point and condition of the short-term evolution experiment. The selected colonies

were resuspended in 30 ml of sterile ddH2O, and 5 ml of this cell suspension were spotted onto LBA plates. To assess the

presence of receptor mutants, 2 ml of phage stock were spotted on top of the bacteria spots. The plates were left to incu-

bate overnight at 37�C. Colonies where no evidence of phage lysis was observed were identified and counted as receptor

mutants.

Plasmid loss assay
Overnight bacterial cultures containing double defense systems were diluted to an optical density at 600 nm of 0.1 in LB contain-

ing 0.2% arabinose. The cultures were infected with phage at an MOI of 0.0001 and incubated at 37 �C with shaking at 180 rpm for

24h. A control without phage was used. Cultures were centrifuged at 8000 3 g for 10 min, and the cell pellet was washed three

times with LB at 12,000 3 g for 2 min. Cells were resuspended in 1 ml of LB, serially diluted, and 100 ml of each dilution were

spread onto LBA plates. The plates were incubated overnight at 37 �C and 96 colonies were picked, dissolved in LB, and streaked

onto LBA plates with and without antibiotics, to determine the rate of plasmid loss. The experiment was repeated for 48 h and 72 h

time points, using 50 ml of the previous cultures to inoculate fresh LB containing 0.2% arabinose, and challenging the cultures with

phage at the same MOI.

Cactus plasmid analysis
E. coli plasmids containing both tmn and Gabija defense systems were extracted from the Enterobacterales dataset. The

plasmid dataset comprised of a total of 104 plasmids from various E. coli strains. We constructed a phylogenetic tree for these

plasmids using the Neighbour-Joining method as described above, using a mash sketch size of 1,000. We then generated

whole length plasmid alignments using Cactus v 2.4.487 with default parameters and the phylogenetic tree described above

as the guiding tree. The reference free alignment obtained was then transformed into multiple alignment format (MAF) using

plasmid CP083423.1 as a reference. This MAF file was filtered and visualized in R. Alignment blocks smaller than 100 bp

were excluded from the analysis. Alignment blocks were considered to be present in the plasmid if they exhibited a coverage

above 50%.
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QUANTIFICATION AND STATISTICAL ANALYSIS

A two-sided binomial test was performed to determine if the observed co-occurrence of defense systems differed significantly from

the expected co-occurrence, using R.96 To correct for multiple testing we utilized both Benjamin-Hochberg and Bonferroni correc-

tions, with a p-value < 0.001 considered significant. Unless stated otherwise, experimental data are presented as the mean of bio-

logical triplicates ± standard deviation. Statistical tests were performed using GraphPad Prism 9.2.0 and one sample t test or one-

way ANOVA test. All statistical tests are described in detail in the corresponding chapters in Methods, and available as R code on

Github: https://github.com/garushyants/synergy_bacterial_immune_systems/ and Zenodo: https://zenodo.org/doi/10.5281/zen-

odo.10075783 .
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